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Indentation testing is a convenient means to study mechanical properties of thin coatings.
We suggest a new method to identify the viscoplastic behavior of a polymer by using the
force-penetration curves during nano-indentation testing performed with two indenter
shapes. During loading, the load applied by the indenter and the penetration depth have
been measured. These force-penetration curves have been compared to the load computed
by using the finite element method with a two dimensional software. The viscoplastic
behavior of the polymer is modeled with the G’sell-Jonas law. The main particularity of this
law is the modeling of the large strain-hardening at large strains. The unknown parameters
of this law have been obtained by fitting computed and experimental force-penetration
curves. We have identified each parameter independently of the others by taking into
account the indenter tip defect. The nano-indentation tests have been performed with three
strain rates and with two indenter shapes: a Berkovich indenter and a cone with a semi
angle of θ = 30◦ and a tip radius. In this paper, the polymer is a polycarbonate. Several
authors have made rheological tests on this polymer. The true strain-true stress curve
obtained with our method is in good agreement with the compression curve.
C© 2002 Kluwer Academic Publishers

1. Introduction
Indentation is a method to identify the mechanical prop-
erties of materials near their surfaces: normal hardness
and yield stress as a function of strain. This test can
be performed on thin coatings with a thickness below
3 µm, at this scale compression or tension tests can not
be performed. It is important to be able to measure yield
stress and strain during such a test.

The mean contact pressure (or normal hardness), Hn ,
can be related to the flow stress, σ0, of the material, for
a representative strain, by the following expression [1]:

Hn

σ0
= C, (1)

where the normal hardness is equal to the ratio of the
normal load applied on the indenter, F , to the projected
area. For an axisymmetrical indenter (Fig. 1):

Hn = F

π R2
c
, (2)

where Rc is the contact radius under load. The yield
stress of work-hardened metals is quite constant, but
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for materials which work-harden, the yield stress in-
creases as the strain increases. For such materials, the
yield stress is always related to a value of the strain.
The constant C is between 2.8 and 3.3 for indentation
with blunt indenters on metals [1]. For a rigid-plastic
material indented by cones, the constant C also varies
as the angle of the indenter varies [2, 3], 1.8 < C < 2.5.
Johnson [4] has suggested a general value to Hn

σ0
which

depends on the rheological factor, X :

X = E

σ0
tan β, (3)

where E is the Young’s modulus and β is the angle of
inclination of the indentation at its edge. This ratio can
be interpreted as the ratio of the strain imposed by the
indenter to the maximum strain which can be accom-
modated by the material before yielding. As this factor
is close to 10, the deformation imposed by the indenter
is elastoplastic with a large elastic part of the whole de-
formation. As this factor increases and becomes close
to 100, the deformation becomes mainly plastic. The
ratio Hn

σ0
increases from 1 to 3 as E

σ0
tan β increases. In
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Figure 1 Geometrical parameters under load and typical force-
penetration curve, with a cone with a tip defect. These are the usual
contact geometry and force-penetration curve for a polymer.

order to compute hardness, the contact radius has to be
measured under load. Because of the very small pen-
etration depths during nano-indentation, the measure
of the contact radius, used to compute normal hard-
ness, is particularly difficult. The elastic recovery for
polymers is very large, the radius measured after un-
loading is not equal to the contact radius under load.
Methods have been then developed to compute hard-
ness with the force penetration curve obtained during
unloading in indentation or nano-indentation [5]. The
relation between hardness and yield stress depends on
several parameters, but it is quite well established.

For conical indenters, the strain field is independent
of the penetration depth of the indenter. In indentation
with cones on metals, Johnson [4] has suggested a def-
inition of the representative strain:

εr = 0.2 cot θ, (4)

where θ is the semi angle of the indenter (Fig. 1). Such
a formula has not been established for elastoplastic ma-
terials, for which the proportionality constant between
the representative strain and tan β may be different [6].

So, Equations 1 and 4 allow to compute and to plot
strain-stress curves in indentation for metals, but, it
is not the case for materials with a large elastic part,
such as polymers. These are the main reasons why, in
the last few years, authors have obtained the stress-
strain relationship of materials by matching loading and
unloading curves calculated using the finite element
method (FEM) with those measured experimentally.
Bhattacharya and Nix [7] have considered a conical
indenter indenting elastic perfectly-plastic materials,
which have been modeled with three parameters: the
Young’s modulus, the Poisson’s ratio and the yield
stress. For elastoplastic materials which work-harden,
Cheng and Cheng [8] have shown that several stress-
strain curves can be obtained for a given loading and
unloading curve. So, they have suggested to use sev-
eral indenters to obtain the stress-strain relationship.
Venkatesh et al. [9] and Tardieu [10] have presented
reverse analysis based on indentation experiments with
a Vickers or a Berkovich pyramid on elastoplastic ma-
terials. They have considered that their method allows
to obtain a unique stress-strain relationship. Simula-
tions have been performed with a frictionless contact,
because with large angle indenters, friction has no no-
ticeable influence on the force-penetration curve. Fur-
thermore, during indentation experiments, the inter-
face between the specimen and the indenter has been
lubricated.

In this paper, the viscoplastic behavior of a polymer
has been identified with two indenters and with three
strain rates by using the loading curves. The elastic be-
havior is assumed to have been previously identified
using compression tests and unloading curves in in-
dentation. The indenter tip defect has been taken into
account and two conditions of friction at the interface
between the indenter and the mesh have been chosen.
In order to verify if our method is efficient, stress-strain
curves have been compared with compression and ten-
sion tests. This is the reason why we have chosen a
polymer where tension and compression tests can be
performed: polycarbonate. Such comparisons can not
be performed on polymers used to make thin coatings.

2. Experimental and numerical method
2.1. Experiments on polycarbonate
Nano-indentation experiments have been performed
with the Nanoindenter II�, commercialised by MTS.
These experiments have been made at Essilor Interna-
tional. Two diamond indenters have been used:

• A cone of semi apical angle 30◦; its tip has been
modeled as a part of a 600 nm radius sphere, esti-
mated with a scanning electron microscope.

• A Berkovich indenter, i.e., a three-faced pyramid
with a sharply pointed tip [11].

The normal force, F , and the depth of indentation,
h, have been measured during the indenter penetration
(Fig. 1). During the test, the load applied to the indenter
has been controlled. The maximum normal force im-
posed to the indenter during experiments is about 2 mN.
The maximum depths are about 2 µm for the conical
indenter and 0.7 µm for the Berkovich pyramid. The
zero-point, defined as F = 0 and h = 0, has been deter-
mined by a change in the force signal as the indenter
approaches the test surface. For polymers, there are un-
certainties in determining the point of tip-sample con-
tact, so that F = 0 does not correspond to h = 0. The
value of the error was estimated of about 10 nm. For
elastoplastic materials such as polymers, the elastic part
of the whole deformation is large. The elastic behavior
is very intricate and depends, in particular, on strain and
strain rate [12, 13]. The finite element code chosen to
simulate the polycarbonate indentation cannot model
such a complex behavior. Consequently the focus is
only on the force-penetration curves during loading.

In order to have a constant mean strain rate during
the indentation by a perfect cone or pyramid, the ratio
Ḟ
F = c, must be constant [14], c is the loading rate, Ḟ is
the differentiation of the load with respect to the time.
So, for constant loading rate, constant mean strain rate
is induced by real conical and pyramidal indenters for
very large penetrations compared to the tip defect, h0.
But at the beginning of the penetration, and for the cone
of semi apical angle 30◦ and 600 nm tip radius, the
mean strain rate is not constant, with such a kinematic.
We chose three load speeds: c = 0.1 s−1, c = 0.01 s−1,
c = 0.001 s−1, for each indenter. For F = 0, the ratio
Ḟ
F is infinite; so at the beginning, the normal force is
constant and equal to 20 µN.
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Figure 2 Finite element mesh for the indentation simulation.

2.2. Two dimensional numerical method
The software used is a two dimensional axisymmet-
ric finite element code: Forge2�. The main feature of
this code is the automatic remeshing procedure. The
cone with a tip defect is modeled with exactly the same
geometry: semi apical angle 30◦ and ρ = 600 nm. The
Berkovich pyramid is approximated by an axisymmet-
ric cone of equal volume for the same penetration depth.
The semi apical angle of this equivalent cone is equal to
70.3◦. First, we shall consider that this indenter has no
tip defect. The indenters are considered to be perfectly
rigid. A typical mesh, composed of six-noded triangles,
is displayed in Fig. 2. To have a good representation of
the contact geometry, elements are small near the inden-
ter. The typical length for an element is about 0.10 µm,
meshes are larger far from the indenter: 3 µm. During
preliminary simulations, the size of the mesh was in-
creased to show that this change has no effect on the
force-penetration curves. When elements are too much
degenerated, the code remeshes automatically. For the
maximal depths of the experiments, simulations of in-
dentation need at least seven remeshing procedures for
the blunt cone and only three for the indenter of semi
apical angle 30◦.

Simulations with a control of the load applied on the
indenter requires far more CPU time than those with a
control of the indenter speed. So, during the simulation
the indenter speed is controled. A similar kinematic as
the one used during experiments has to be imposed.
For a pyramid or a cone, and for large penetration
depths compared to the tip defect (h � h0), the force
is proportional to the square of the penetration [8]:

F = Dh2 (5)

⇒ �F

�t
= Ḟ = 2Dḣh (6)

Ḟ

F
= c = 2

ḣ

h
(7)

During indentation experiments with the Berkovich in-
denter, ratios Ḟ

F and ḣ
h have been measured (Table I).

Relationship 7 is valid, as the difference is less than 10
per cent. So, in simulation, the indenter speed is, at first,
constant, and for h > 50 nm the ratio ḣ

h is constant and

TABLE I Comparison between the ratios Ḟ
F and ḣ

h for the Berkovich
indenter

Ḟ

F
(s−1) 0.1 0.01 0.001

ḣ

h
(s−1) 0.0493 0.00536 0.000548

equal to the values reported in Table I. For the conical
indenter, the kinematic is not exactly the same during
the beginning of the penetration. However, it will be
shown later that force-penetration curves of this inden-
ter are most interesting for large penetrations.

3. The modeling of the polymer behavior
3.1. The viscoplastic model
With its automatic remeshing procedure, the finite ele-
ment software used (Forge2�) allows to simulate the
large penetrations and strains imposed during indenta-
tion test. This software is mostly used to simulate metals
forging, the rheological laws to model the behavior of
solid polymers are quite poor. We discuss below about
these insufficiencies:

• The elastic behavior of polymers depends in par-
ticular on strain and strain rate [13]. However, the
elastic behavior is modeled by a linear law. The
parameters defining the material elastic behavior
are the Young’s modulus, E , and the Poisson’s
ratio, ν. These parameters are constant.

• For glassy polymers, the true stress rises to a maxi-
mum value, this is the end of the purely viscoelastic
behavior. As the strain increases, the stress drops.
This behavior is also observed in shear and com-
pression for true stress-true strain curves (Fig. 3).
It is impossible to model this strain softening with
the finite element software we use.

• The plastic part of the deformation is based on the
von Mises criterion, which supposes that the mate-
rial is isotropic. This criterion does not take into ac-
count the hydrostatic pressure, nor the anisotropy
due to material orientation. The influence of the
hydrostatic pressure on polymers is reflected by
the difference between the tension and compres-
sion stress-strain curves in Fig. 3 at small strains.
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Figure 3 True stress-true strain curves for polycarbonate [16], true strain
rate = 10−4 s−1, T = 23◦C.

Many authors have also shown the influence of the
hydrostatic pressure on polymers [12, 13]. For a
constant strain, stress for a polycarbonate increases
to 35% and 65% as hydrostatic pressure increases
respectively to 100 MPa and 200 MPa [15].

Despite these approximations, the best law available
in the software to model polymers behavior, is the law
presented below.

After studying the behavior of several polymers in
tension, G’sell and Jonas [17] present the following
law:

σ0(ε̄, ˙̄ε, T ) = K e
a
T (1 − e−wε̄)ehg ε̄

2 ˙̄εm (8)

This law links the true stress, σ0 to the true strain, ε̄. It
assumes a temperature dependence with the exponen-
tial term e

a
T , and a strain rate dependence with a power

law ˙̄εm . The parameters a and m are constant, a is a ther-
mal coefficient and m is the sensitivity to the strain rate.
So true stress-true strain curves for a polycarbonate are
split in four parts (Fig. 3):

• A purely viscoelastic deformation at low strain, it
is almost linear and the slope is large. This part is
modeled by the term (1 − e−wε̄) of Equation 8.

• The stress reaches a local maximum value and after
the stress drops. This strain softening exists for
glassy polymers like polycarbonate. It is not taken
into account in the formulation representing the
material viscoplastic behavior (Equation 8).

• As strain increases, the flow stress slowly in-
creases. This part is called the viscoplastic level.
The consistency K , multiplied by the e

a
T and ˙̄εm

terms, is a medium value of this viscoplastic level.
• At larger strains the flow strain strongly increases.

This large strain hardening is related, in tension, to
the macromolecules orientation in the drawing di-
rection. It is higher and it begins earlier in tension
than in shear and compression. The ehg ε̄

2
term mod-

els this strain hardening, hg is called the hardening
modulus.

3.2. Discussion about strain hardening
at large strains

The large strain hardening for polymers during tension
is due to the macromolecules orientation in the drawing
direction. Compression tests on polycarbonate [16, 18]
(Fig. 3) have shown that this strain hardening also ex-
ists in compression: true stress increases to 80 MPa and

280 MPa as true strain increases to 0.6 and 1.2 respec-
tively. Hardening in tension is a result of an uni-axial
orientation process, whereas in compression planar ori-
entation is achieved [18]. X-ray observations made par
Bisilliat [16] confirm this behavior. The strain harden-
ing in shear stress is lower than in tension, but larger
than in compression. In compression or shear, macro-
molecules are less oriented than in tension, so strain
hardening is lower and begins later (Fig. 3). This is the
reason why the G’sell-Jonas law is also used to model
compression and shear behavior.

The indentation test is a multi-axial test. The G’sell-
Jonas law has been formulated first for uni-axial tests
such as tension test. The use of this law to simulate
the indentation test assumes that this strain hardening
also exists for polymers put through multi-axial tests.
Bisilliat [16] made X-ray analysis for an impact test on
a polycarbonate; this test is bi-axial. The polymer is bi-
axially oriented and the intensity of the strain hardening
is equal to the one observed in compression and shear.
Even if the strain rates in an impact test are higher than
in an indentation or in a tension test, the strains are
in the same order of magnitude. And this is the most
important reason, why we focus on the use of this law.
Therefore, the high strain hardening observed in uni-
axial tests was found to exist in multi-axial tests.

So, these facts suggest that the G’sell-Jonas law could
describe, in first approximation, the polymer behavior
during indentation or scratch, we shall discuss this point
later (Section 5.1).

3.3. The elastic model
Although elastic behavior of a polymer is complex, the
elasticity has been modeled with a linear law, the only
model available in the finite element codes used. The
parameters are Young’s modulus, E , and Poisson’s ra-
tio, ν. These parameters have been deduced from com-
pression tests at Essilor International: E = 2.4 GPa,
ν = 0.35. The Young’s modulus value has been also
confirmed with nano-indentation tests by using the
force-penetration curves during unloading.

The G’sell-Jonas law describes the visco-elastic
behavior for small strains with the (1 − e−wε̄) term. In
Forge�, the instantaneous deformation increment is
separated in an elastic reversible part and a plastic irre-
versible part. The first part is computed with the elastic
parameters (E and ν). When plastic deformation oc-
curs, the second one is computed with the G’sell-Jonas
law. This law models at the same time the behavior for
small and large strains (Section 3.1), so for small strains
the polymer behavior is modeled by both the elastic
parameters (E and ν) and by the G’sell-Jonas law with
the (1 − e−wε̄) term. In order to have a behavior, for
small strains, which is only modeled by the Young’s
modulus, the (1 − e−wε̄) term must be equal to 1. This
is the reason why we have chosen a very large value
for w. For the next simulations, this parameter is equal
to 5000.

3.4. Thermo-mechanical dependence;
parameter a

The value of the thermo-mechanical dependence para-
meter a, obtained by Bisilliat [16] is 774 K −1 (e

a
T ).
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T ABL E I I Thermal effect on the consistency of a polycarbonate,
a = 774 K −1

T (◦C) 20 25 30 35 40

e
a
T 14 13.4 12.9 12.3 11.9

Simulations of indentation with thermo-mechanical de-
pendence and without friction show at the most a 10◦C
increase in temperature. Consistency decreases by 8%
(Table II). This heating, due to the dissipated energy re-
sulting from the plastic deformation very, is localized
and it has no significant effect on the force-penetration
curves or on normal hardness. Thermo-dependence will
be ignored during the simulations of indentation: the
value of the parameter a is taken equal to zero.

3.5. Coulomb’s friction coefficient µ
The friction between the material and the indenter is
modeled with a Coulomb’s law. The friction shear stress
is equal to the normal pressure multiplied by the friction
coefficient µ:

τ = µp (9)

This coefficient is constant at each contact point. Its
value was estimated with scratch tests on polycarbon-
ate performed at Essilor International, according to a
procedure described in details in [19] and summarized
here. During scratch test, normal force and tangential
force applied to the indenter are measured. The ratio
between the tangential force and the normal force is
called the apparent coefficient of friction, µ0. This co-
efficient is not the same as the local Coulomb’s friction
coefficient. By using analytical models, the apparent
coefficient of friction has two components, a plough-
ing part µp, and an adhesive part µa [20]:

µ0 = Ft

W
= µp + µµa (10)

For a conical indenter with a large tip radius, analytical
expressions of µp and µa have been obtained with the
following hypothesis:

• the contact pressure is constant at the interface;
• the contact radius is constant at the front and on the

side of the indenter;
• there is a complete elastic recovery at the rear face

of the indenter;
• the shear stress is assumed to be parallel to the

sliding direction.

The apparent coefficient of friction is measured dur-
ing the scratch test, the ploughing and the adhesive parts
are computed using the analytical expressions of µp

and µa , the indenter geometry and the penetration of
the indenter in the material. The Coulomb’s friction co-
efficient is deduced with the Equation 10, its value was
about 0.3. This coefficient was supposed to be constant
with the strain rate and the strain. We have supposed
that this coefficient was the same in indentation and
scratch. In order to see the influence of this coefficient
on the rheology, we have also identified the parameters
for a friction coefficient, µ of 0.

4. Numerical results
We have to identify three parameters:

• m, sensitivity to the strain rate;
• K , consistency;
• hg, hardening modulus.

The process that we will describe allows these
parameters to be identified in three separated parts. We
will compare force-penetration curves measured with
the nano-indentation test, with those computed with the
numerical modeling. For the identification of m, the
consistency and the hardening modulus have been cho-
sen close to the values obtained by Bisilliat [16] in
compression and tension on a polycarbonate: K =
88 MPa · s−m , hg = 0.9.

4.1. Identification of the sensitivity to the
strain rate, m

For a perfect pyramidal or conical indenter, the force
during loading is proportional to the square of the pene-
tration [8] (appendix, with R∗ = h∗ = 0). In this section,
we assume that the Berkovich indenter has a perfect
pointed tip. As we will see, we consider a difference
between two values, so, this assumption is of no con-
sequence. To identify the sensitivity to the strain rate,
the apparent hardness is used:

Happ = F

π R2
(11)

F is the normal force, and R = h tan θ , h is the penetra-
tion depth (Fig. 1). The apparent hardness is a different
way to represent the force versus penetration. With the
Berkovich indenter, the apparent hardness is relatively
constant with the penetration (Fig. 4a). So, it is easier
to compare the value of the apparent hardness than the
evolution of the force during loading. For several sim-
ulations performed with various values of m, we have
measured the difference of apparent hardness for two
loading rates: c = 0.1 s−1 and c = 0.001 s−1: �Happ.
Even if the Berkovich indenter is considered to have no
tip defect, the error in the value of the apparent hard-
ness is cancelled because we have computed the dif-
ference between two values of apparent hardness. The
ratio �Happ

H̄app
is computed, where H̄app is the mean value

of the apparent hardness for the two loading rates. This
ratio is equal to zero for m = 0 and increases with m
(Fig. 4b). The points are fitted by a linear regression.
The sensitivity to the strain rate is deduced from this
regression and from the experimental value of this ratio.

The sensitivity to the strain rate assuming either
µ = 0 or µ = 0.3 are reported in Table III. The apparent
sensitivity to the strain rate is a little larger for µ = 0.3
than for µ = 0. Values obtained by Bisilliat [16] are
equal to 0.04 for compression and tension, and 0.02
for shear. The material in indentation seems to be

TABLE I I I Sensitivity to the strain rate for a polycarbonate, for two
values of the Coulomb’s friction coefficient

µ = 0 m = 0.046
µ = 0.3 m = 0.053
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Figure 4 Apparent hardness with the Berkovich indenter for two loading
rates (c = 0.1 s−1 and c = 0.001 s−1). The theoretical values are obtained
with µ = 0, hg = 0.9, K = 88 MPa · s−m . (a) Theoretical and experimen-
tal evolution versus the penetration. (b) Theoretical evolution of the rel-
ative increase in apparent hardness at high penetration, �Happ/H̄app ,
versus the sensitivity to the strain rate m and experimental value.

more sensitive to the strain rate than in compression or
tension.

The difference between force-penetration curves for
several loading rates is now determined. On the other
hand the values of the apparent hardness are higher for
experiment than for simulation (Fig. 4a). The identifi-
cation of the consistency in the next section will allow
to fill this gap.
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Figure 5 Equivalent plastic strain computed with the finite element code�, in indentation for two indenters. m = 0.046, K = 99, hg = 0.8, µ = 0.

4.2. Identification of the consistency K
Locally, strains are not homogeneous in the volume
(Fig. 5). Tabor [1] has suggested a representative value
of the plastic strains; for conical indenters the repre-
sentative strain is proportional to cot θ , Equation 4 [4].
This relationship gives an average of the plastic strains
imposed by the indenter. An indenter of semi angle 30◦
produces a representative strain five times larger than
for an indenter of semi angle 70.3◦. In the simulations,
the equivalent plastic strain, εeq , is computed for each
element of the mesh:

εeq =
∫ t

0

[
2

3
ε̇ : ε̇

]1/2

dt, (12)

where ε̇ is the plastic strain rate tensor. The simulations
show that most of the material is strained to a level less
than 0.4 for the 70.3◦ cone (Fig. 5). For the predicted
plastic strains, stress is essentially constant, it is corre-
sponding to the viscoplastic level (Fig. 3). This level is
modeled by the consistency K which is identified with
the Berkovich pyramid and its equivalent cone.

The other indenter has a large tip defect (h0 =
0.3 µm). For small penetration depths, we have ver-
ified that equivalent plastic strains are quite similar to
those computed with the 70.3◦ indenter. As penetra-
tion increases, the equivalent plastic strains increase
until a constant level is reached for large penetration
depths. Equivalent plastic strains continue to increase
even when the spherical part of the indenter is com-
pletely in the material. We suggest that the represen-
tative strain for such an indenter is proportional to the
ratio hc

Rc
:

εr ∼ hc

Rc
(13)

where hc is the contact penetration and Rc the contact
radius (Fig. 1). For small penetrations, hc

Rc
is equivalent

to Rc

2ρ
, this is the relationship given by Tabor [1] for

spherical indenters. For large penetrations, hc

Rc
is equiv-

alent to cot θ .
For the 70.3◦ cone and the Berkovich indenter with a

tip defect, the square root of the force is a linear function
of the penetration depth (appendix):
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√
F = Ah + B (14)

Hence, we consider that the Berkovich indenter has a
tip defect. The slope A is related to the semi angle of
the indenter and the contact pressure, the parameter B
is related to the semi angle of the indenter, the con-
tact pressure and the indenter tip radius. For a given
loading rate (c = 0.1 s−1), the experimental slope, A, is
identified, for penetration depths higher than 400 nm.
For several numerical simulations with different val-
ues of the consistency, A is computed (Fig. 6). These
points are fitted using linear regression to estimate the
consistency. There are dispersions due in particular to
numerical uncertainty and the choice of the penetra-
tion depth from which the experimental slope is fitted.
We estimate that the uncertainty is about ±4% for the
identification of the consistency. The determination of
the sensitivity to the strain rate has been previously per-
formed by starting with the value K = 88 MPa · s−m . As
this determination is based on the relative increase of
apparent hardness with two loading rates,�Happ/H̄app,
and that the final value of K is 12 percent higher, we
assume that it is not necessary to estimate again the
value of m.

Results are reported in Table IV. Consistency in-
creases a little as friction coefficient increases. Al-
though this increase is small (3%) and can be neglected
in first approximation, it is rather surprising as we could
expect that the indentation load increases with friction
and so that the identified value of consistency decreases
as the assumed value of friction coefficient increases.
During indentation, the normal force per surface unit is
the sum of two terms, a pressure component, py , and a
shear component, τy (Fig. 7a):

f = py + τy = p sin θ + τ cos θ (15)

For the indenter of semi apical angle 70.3◦, the
shear component is quite small (sin 70.3 = 0.94; 0.3

T ABL E IV Consistency K for two values of the Coulomb’s friction
coefficient. Identification of the tip radius of the 70.3◦ angle indenter
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Figure 6 Slope A (
√

F = Ah + B) versus consistency. The experimental
slope is 59.14, the consistency found is approximately equal to 99, for
µ = 0.
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Figure 7 Normal pressure and shear stress in indentation. (a) Decom-
position of the stresses at the contact. (b) Numerical values for indenter
of semi angle 70.3◦, for m = 0.046, K = 99 and hg = 1.

cos 70.3 = 0.10), and the contact pressure is the larger
component. Medium values of the contact pressure,
pmedium, and the shear stress, τmedium, have been com-
puted for R

Rc
≤ 0.9 (Fig. 7). In fact, the contact pressure

decreases when friction is taken into account (Fig. 7b,
pmedium = 193 MPa, for µ = 0, and pmedium = 180 MPa,
for µ = 0.3). The friction component does not fill this
difference because the value of cos θ is too small:
fmedium = 182 MPa, for µ = 0 and fmedium = 179 MPa,
for µ = 0.3. This is the reason why the apparent con-
sistency for a rough contact is a little higher than for
a frictionless contact. The opposite evolution, as we
could expect, will be observed for the evolution of the
hardening modulus (Section 4.4) as µ increases from
0 to 0.3.

The consistency K is identified before the hardening
modulus, which is chosen arbitrarily. By increasing the
parameter hg from 1.3 to 7.5, we have verified that it had
no significant effect on the force-penetration curves for
the simulation with the 70.3◦ indenter. For a high value
of the hardening modulus, the strain hardening is larger
and begins earlier. But for the deformation levels im-
posed by the 70.3◦ cone, the flow stress is quite constant
and it is not affected by the increase of hg. The identifi-
cation of the consistency is thus independent from the
value of the hardening modulus.
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Figure 8 Force-penetration curves during loading for a polycarbonate.
Comparison between the experimental curves (Berkovich indenter) and
the numerical curves (µ = 0, θ = 70.3◦ ρ = 0 nm and ρ = 455 nm). For
more legibility the curves for the intermediate loading rate (c = 0.01 s−1)
are not plotted. (a) ρ = 0 nm. (b) ρ = 455 nm.

4.3. Identification of the indenter tip defect
The experimental and numerical force-penetration
curves are plotted in Fig. 8a, for the frictionless contact.
Numerical curves are below the experimental curves,
and the difference between them is always similar. In
these simulations, it was assumed that the equivalent
cone of the Berkovich pyramid had no tip defect. The
analytical model in the appendix shows that, a small tip
radius has some consequences on the force-penetration
curves, even for high penetration depths. This differ-
ence can be eliminated with the tip radius ρ (Fig. 8b).
We make the assumption that the indenter tip of the
Berkovich pyramid may be modeled by a spherical cap.
The parameter B of Equation 14 is connected to the
semi angle of the indenter, the contact pressure and the
indenter tip radius. The semi angle of the indenter is
fixed, the contact pressure is already fixed by the rheol-
ogy. The indenter tip radius is identified in order to have
the same parameter B during experiments and simula-
tions. As suggested by the model in the appendix, the
slope A does not change significantly with the tip ra-
dius (Table V). The tip radius, ρ, and the tip defect, h0,
are equal to 455 nm and 28 nm, respectively for µ = 0
(Fig. 9), and to 580 nm and 36 nm, respectively for
µ = 0.3. The difference between the tip radius for the
two conditions of friction is quite large but the tip de-
fects are very small compared to the penetration depths

TABLE V Determination of the tip defect and the tip radius of the
Berkovich indenter, µ = 0

Tip defect Tip radius
A B h0 (nm) ρ (nm)

Simulation 59.13 −0.25 0 0
59.09 0.88 20 322
59.05 2.08 40 650

Experiment 59.13 1.37

0 100 200 300 400 500 600 700

tip radius ρ (nm)

-1

0

1

2

3

 B
  (

N
1/

2 )

0 100 200 300 400 500 600 700

0

experimental

value

Figure 9 Identification of the indenter tip radius, µ = 0, c = 0.1 s−1.

(Table IV). Also, it confirms the assumptions that A
does not change significantly with the tip radius, and it
gives an order of magnitude value of the tip radius.

The difference between the numerical and experi-
mental curves can be also due to the error for the zero-
point identification. This is the reason why the tip de-
fect identified may be different from the real one. It is
important to note that our work suggests that the dif-
ference between numerical and experimental curves is
not due to an error on the rheological identification but
the real cause is the indenter tip defect or an error on
the zero-point identification.

4.4. Identification of the hardening
modulus hg

The indenter of semi apical angle 30◦ can induce large
deformations. The mean value of the equivalent plas-
tic strains computed in simulation is equal to 0.8,
and the maximum is about 1.8 (Fig. 5). For these
strains, the large strain hardening due to the macro-
molecules orienting, has already begun (Fig. 3). The
hardening modulus, hg, models the strain hardening of
the polymer for high strains. With this indenter, the
penetration depths are about 2 µm. The influence of
the spherical tip is still large, because the transition
depth between the spherical and the conical part is
0.3 µm. We have used the method described in the pre-
vious sections to identify the hardening modulus and
the indenter tip defect. For penetration depths higher
than 1 µm, Equation 14 fits numerical curves (hypoth-
esis R∗2 � R2

c and p(αi ) � p(Ri ) are valid, appendix).
The hardening modulus is identified using the force-
penetration curves for a loading rate equal to 0.1 s−1.
The numerical curves must be superpose or parallel
to the experimental curves. If the curves are paral-
lel, the difference is filled by adjusting the tip radius.
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Identifications made with penetration depths between
0.75 µm and 1 µm show that the hardening modulus
is less than 6 per cent of the value obtained for higher
penetration depths (h > 1 µm).

This result is very useful for the identification of the
viscoplastic parameters of thin films. For a thickness
of film of 3 µm, indentation experiments have shown
that the penetration depth of this indenter (θ = 30◦ and
ρ = 600 nm) must be lower than 1 µm, in order to have
no influence of the substrate.

The apparent hardening modulus decreases as fric-
tion increases (Table VI). It is more obvious with this
parameter than with the consistency, because the in-
denter has a power included angle (θ is less) and the
friction has more effect on the normal load. The numer-
ical force-penetration curves are not superimposed to
the experimental one (Fig. 10a). This difference is ad-
justed by increasing the indenter tip radius, as presented
in the previous section. The values of the tip radius for
two conditions of friction are quite close. The tip radius
is a little higher than the real one observed with the
scanning electron microscope. The force-penetration

T ABL E VI Hardening modulus hg and tip radius of the 30◦ angle
indenter for two values of the Coulomb’s friction coefficient

µ = 0 hg = 0.8 ρ = 660 nm
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Figure 10 Force-penetration curves during loading for a polycarbonate.
Comparison between the experimental curves (θ = 30◦, ρ = 600 nm)
and the numerical curves (µ = 0, hg = 0.8, θ = 30◦, ρ = 600 nm and
ρ = 660 nm). For more legibility the curves for the intermediate loading
rate (c = 0.01 s−1) are not plotted. (a) ρ = 600 nm. (b) ρ = 660 nm.

curves for c = 0.001 s−1 are not well superimposed
(Fig. 10b). The sensitivity to the strain rate identified
with the Berkovich indenter depends probably on the
strain. This parameter is a little larger for this indenter.
This fact is also observed for the curves with µ = 0.3.

4.5. Hydrostatic pressure in indentation
In numerical modeling, the plasticity criterion does not
include the effect of the hydrostatic pressure, but the
code can compute it. The hydrostatic pressure is max-
imum at the contact interface for the indenter for the
70.3◦ cone and below the contact for the other one
(Fig. 11). In first approximation, the hydrostatic pres-
sure decreases as the radial distance to the indenter
tip increases, as in the model of the expansion of a
spherical cavity [4]. The values are quite similar for the
two indenters. The dark area corresponds to hydrostatic
pressure higher than 120 MPa. For such a pressure, the
yield stress increases by 40 per cent for a polycarbon-
ate according to Staats-Westover and Vroom [15]. The
analytical formula of the hydrostatic pressure in com-
pression is σ0

3 , and is equal to 30 MPa for small strains.
During indentation, hydrostatic pressure is higher than
in compression, ∼ 4

3σ0.

5. Discussions
5.1. Analysis of the stress-strain curves
First, the assumption made in Section 3.2 concerning
the use of the G’sell Jonas law and more precisely
the modeling of large strain hardening of polymers in
indentation is valid. While the orientation of macro-
molecules in tension or compression tests is in the same
direction in all the volume, in indentation it occurs more
locally, depending of the kind of stress: tension, com-
pression or shear.

The numerical and experimental force-penetration
curves are in good agreement. Bisilliat [16] has made
tension and compression tests on a polycarbonate. The
parameters of the G’sell-Jonas law have been identified
from these tests. It is not exactly the same polycarbon-
ate as used there, but it is also possible to compare
the stress-strain curves in compression and tension and
those obtained in indentation for the two coefficients of
friction (Fig. 12).

The rheology in indentation depends on the assump-
tion of the value of the friction coefficient between the
indenter and the material. For small strains, the behav-
ior is independent of friction: this behavior has been
identified with a Berkovich indenter, where friction has
little effects on the force-penetration curves. For higher
strains, the stress is lower for µ = 0.3 than for µ = 0,
the vertical component of the shear stress τ acting on
the indenter θ = 30◦ is large enough to increase signif-
icantly the normal force. So, it is important to identify
previously the coefficient of friction.

For small strains, stresses obtained with the present
method are higher than those in tension and close to
stresses in compression. Results presented in the pre-
vious section have shown that hydrostatic pressure is
higher in indentation than in compression. So, we would
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Figure 11 Hydrostatic pressure in indentation for a polycarbonate for the two indenters.
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Figure 12 Comparison between the rheology from the present work and
those from Bisilliat [16] in compression and tension. Curves are plotted
with equation 8 and the parameters in tables 3, 4, and 6, for a strain rate
of 10−4 s−1.

expect that the viscoplastic level in indentation would
be higher than the one observed in compression. For
high strains, the curves obtained from the present work
are between the tension and compression curves. For a
coefficient of friction of 0.3, the curve is near the curve
obtained in compression. Bisilliat [16] has identified a
value of the hardening modulus in compression equal to
0.52. The stress-strain curves for µ = 0.3 are the most
representative curves of the rheology of the material,
because this coefficient of friction is close to the value
deduced from scratch experiments.

The sensitivity to the strain rate obtained with the
Berkovich indenter is a little higher than for the other
indenter, for which plastic strains are almost five times
larger (Fig. 10b). The values of m obtained in indenta-
tion are in the same order of magnitude than those in
compression and tension and higher than in shear. An
increase of two decades of the strain rate implies an
increase of 28% in the flow stress, while as the plastic
strain increases from zero to one, the associated flow
stress reaches a 65% higher value. Although polymers
are sensible to the strain rate at room temperature, the
effect of deformation in indentation (i.e., the angle of
the indenter) is much larger.
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Figure 13 Shape ratio computed with the simulations for two indenters
and for three loading rates.

5.2. Shape ratio and normal hardness
The shape ratio c2 is the ratio between the contact depth
and the total depth (Fig. 1):

c2 = hc

h
(16)

First, consider the shape ratio under load for several
loading rates and the two indenters. The shape ratio is
always lower than 1, meaning that there is a ‘sinking-
in’ under load (Fig. 13). This ratio is of course inde-
pendent of the penetration depth for an indenter with
a sharp tip. For the 30◦ indenter the shape ratio in-
creases for small penetrations and becomes constant
for penetrations higher than 0.5 µm. The shape ratio
decreases as the loading rate increases: the flow stress
is greater for the high loading rates, and the elastic part
of the deformation is then higher. The factor E

σ0
tan β

is therefore smaller, the indentation for c = 0.1 s−1 is
more elastic, and the ‘sinking-in’ is more marked. As
expected, the shape ratio decreases as friction at the in-
terface increases. The material cannot go up as much
as it was possible without friction, and the ‘sinking-
in’ is increased. As the semi angle of the indenter de-
creases, deformations become higher and the shape ra-
tio is higher for the indenter of semi angle 30◦. The tip
defect has negligible influence on the shape ratio for
the 70.3◦ indenter.
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Figure 15 Normal hardness computed with the simulations for two
indenters and for two loading rates.

After unloading there is a depth recovery, its value is
about 10 percent (Fig. 14). It has been observed for the
two indenters in numerical simulation. This elastic re-
covery is larger for the real sample, according to some
observations made with an atomic force microscope.
The elastic behavior in simulation is not well modeled,
these results only show the first step of the elastic recov-
ery. The next steps are due to the visco-elastic behavior
of the polycarbonate. The other important fact is that
there is always a pile-up formation after unloading, the
value of the shape ratio after unloading is about 1.06.
The residual radius, R, is larger than the contact radius,
Rc. The residual imprint of the indentation is larger but
its depth is smaller. Visco-elastic properties of materials
could have opposite effects: the residual radius would
become smaller than the contact radius.

For the 70.3◦ indenter, the normal hardness is inde-
pendent of the penetration depth (Fig. 15). The tip ra-
dius and the coefficient of friction have no important in-
fluence on the normal hardness (less than 3%). For small
strains, the stress is almost the same for the two condi-
tions of friction at the interface. As the loading rate in-
creases from 0.001 s−1 to 0.1 s−1, the hardness increases
by 16%: the normal force is higher for c = 0.1 s−1 and
the shape ratio is smaller. For the indenter of semi apical
angle 30◦, the normal hardness increases as the pene-
tration depth increases and becomes relatively constant
for large penetrations. Hardnesses are higher than those
computed with the 70.3◦ indenter, with a maximal in-
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Figure 16 Evolution of the normal hardness over the flow stress ratio as
a function of the rheological factor for the indenter of semi apical angle
70.3◦ and for three loading rates and two conditions of friction.

crease of 50%. The flow stress is higher for this in-
denter, because of the strain hardening at large strains.
The difference as a function of loading rate is similar to
the one observed with the 70.3◦ indenter. Friction has
more of an effect: the hardness increases by 30 MPa
for a coefficient of friction equal to 0.3, because the
vertical component of the shear stress is added to the
vertical component of the normal pressure (Fig. 7a).
The normal force is larger and the shape ratio is lower,
so the normal hardness increases for µ = 0.3. This fric-
tion effect on normal hardness has been observed in
indentation on polymers by Briscoe et al. [21] and by
Ramond-Angélélis [22] in numerical simulation.

5.3. Relation between the normal hardness
and the flow stress

During simulations of indentation with the indenter of
semi apical angle 70.3◦, strains are small and the flow
stress is relatively constant. Assuming that the strain
rate is equal to the loading rate (ε̇ ∼ ḣ

h ), the flow stress
can be computed and compared to the normal hard-
ness. This comparison is far more complicated and has
not been done with the indenter θ = 30◦ because the
flow stress during loading is not constant and it cannot
be well identified. The rheological factor is about 10,
and the ratio of the normal hardness to the flow stress
is about 2.4 (Fig. 16). The Hn

σ0
ratio increases as the

rheological factor increases. These values are in a good
agreement with those obtained by Marsh [23] with a
Vickers pyramid for a diverse range of materials, but
they are higher than the elastic-plastic model suggested
by Johnson [4] with ν = 0.35.

6. Conclusions
Elastic parameters of polycarbonate has been previ-
ously obtained with compression and indentation tests.
In this study, the viscoplastic behavior has been mod-
eled with a G’sell-Jonas law. We had to identify three
parameters: the sensitivity to the strain rate, the con-
sistency, and the hardening modulus. These parameters
have been obtained for 2 values of coefficient of friction
by using the nano-indentation test and the numerical
modeling of this test.
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Stress-strain curves of polycarbonate show a depen-
dence on the friction coefficient, especially at large
strains. So, the coefficient of friction has to be de-
termined independently and has to closely represent
the real contact conditions. It has been shown that for
µ = 0.3, the behavior in indentation is close to the one
observed in compression. For this multi-axial test, the
strain hardening, observed on polymers in tension or
compression, does exist and is close to the value of
the strain hardening in compression. Comparisons with
compression and tension tests show that our method
gives good results. Similar identifications have been
also made on a poly(methyl methacrylate) and a ther-
mosetting polymer [19] and show a good agreement
with the compression tests. A good agreement with the
compression behavior has been found. This method can
also be used to identify the rheology of thin polymer
films.

Numerical simulation show that the ‘sinking-in’ ef-
fect under load becomes, after unloading, a ‘pile-up’
effect. The normal hardness is larger for the indenter
θ = 30◦ and increases as the coefficient of friction and
the loading rate increase. For the 70.3◦ indenter, the
normal hardness is about 2.4 times the flow stress.
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Appendix
It is impossible to make a real indenter with a pointed
tip. The tip defect is modeled with a part of a sphere.
The static equation along the vertical axis gives the
following equation [20] (Fig. 17):

F = 2π

∫ α

0
ρdγρ sin γ p(γ ) cos γ︸ ︷︷ ︸

spherical part

+ 2π

∫ Rc

R∗
r

dr

sin θ
p(r ) sin θ︸ ︷︷ ︸

conical part

(17)

Figure 17 Parameters of the contact under load.

In order to simplify the equation, the friction term is
not written. The first part of the integral is related to
the normal force acting on the spherical part, while
the second one is related to the conical part. The nor-
mal pressure is not constant on the interface. The two
functions, sin γ cos γ and r do not change their signs
on the intervals [0; α], α < π

2 and [R∗; Rc]. The theo-
rem of the mean value is used, where αi ∈ [0; α] and
Ri ∈ [R∗; Rc]:

F = 2πρ2 p(αi )
∫ α

0

sin 2γ

2
dγ + 2πp(Ri )

∫ Rc

R∗
rdr

= πρ2 p(αi ) sin2 α + πp(Ri )
(
R2

c − R∗2)
= πp(αi )R∗2 + πp(Ri )

(
R2

c − R∗2)
= π R∗2(p(αi ) − p(Ri ))︸ ︷︷ ︸

1st term

+ π R2
c p(Ri )︸ ︷︷ ︸

2nd term

For contact radius Rc higher than the limit radius R∗
and assuming that p(αi ) ≈ p(Ri ), the first term is negli-
gible compared to the second term. The mean pressure
p(Ri ) is independent of the penetration for h > h∗. The
contact radius Rc is linked to the shape ratio c2 = hc

h :

Rc = tan θ (hc2 − h∗) + R∗ (18)

The shape ratio is constant for penetrations higher than
the limit penetration h∗. The force has the following
expression:

F ≈ πp(Ri )(tan θ (c2h − h∗) + R∗)2 (19)

The force is related to the square of the penetration.
The consistency and the hardening modulus are identi-
fied by plotting the square root of the force versus the
penetration h:

√
F ≈ Ah + B (20)

A =
√

πp(Ri ) tan θc2

B =
√

πp(Ri )(R∗ − tan θh∗)

The slope A is related to the contact pressure, the shape
ratio and the angle of the indenter. B is related to the
contact pressure, the θ angle and the geometry of the
indenter tip (R∗ and h∗). First, the consistency is found
(p(Ri ) is fixed), and then the tip defect is identified with
the parameter B.
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